Bipolar Junction Transistors

NPN Transistor

Schottky Transistor

Standard TTL Logic Inverter (model)
Problem With Standard TTL

- Transistor Storage Time
- Significant Propagation Delay

Schottky-Clamped Transistor
Schottky Transistor

Schottky-Clamped Transistor

Schottky Transistor Symbol

Schottky TTL Logic Inverter (model)

\[V_{CC} \]
\[R1 \]
\[Q1 \]
\[R2 \]
\[VOUT \]
\[VIN \]
TTL NAND Gate (74LS00)

NAND Gate (74LS00) : Output High
NAND Gate (74LS00) : Output Low

Multi-Emitter Transistor
74LS00 With Multi-Emitter Input Transistor

Logic Levels and Noise Margins

\[V_{CC} = 5 \, \text{V} \]

- **HIGH**: \(V_{OH_{\text{min}}} = 2.7 \, \text{V} \), \(V_{IH_{\text{min}}} = 2.0 \, \text{V} \)
- **ABNORMAL**: \(V_{IL_{\text{max}}} = 0.8 \, \text{V} \)
- **LOW**: \(V_{OL_{\text{max}}} = 0.5 \, \text{V} \)

High-state DC noise margin
Low-state DC noise margin
Fanout

- The fanout of a logic gate is the number of inputs that the gate can drive without exceeding its worst-case loading specifications.
- Fanout must be examined for both possible output states.
- TTL input or output lead is defined to be positive if the current actually flows into the lead, and negative if the current flows out of the leads.

Current Drive Capability

- $I_{IL_{MAX}}$: The maximum current that an input requires to pull it LOW. Since current flows out of a TTL input in the LOW state, $I_{IL_{MAX}}$ has a negative value. Approximately –0.4 mAmps for most TTL inputs.
- $I_{IH_{MAX}}$: The maximum current that an input requires to pull it HIGH. Since current flows into a TTL input in the HIGH state, $I_{IH_{MAX}}$ has a positive value. Approximately 20uAmps for most TTL inputs.
- $I_{OL_{MAX}}$: The maximum current that the output can sink in the LOW state while still maintaining an output voltage no greater than $V_{OL_{MAX}}$. Since current flows into the output, $I_{OL_{MAX}}$ has a positive value. Approximately 8 mAmps for most TTL outputs.
- $I_{OH_{MAX}}$: The maximum current that the output can source in the HIGH state while still maintaining an output voltage no less than $V_{OH_{MIN}}$. Since current flows out of the output, $I_{OH_{MAX}}$ has a negative value. Approximately –400 uAmps for most TTL inputs.
Asymmetrical TTL Outputs

High Output

\[I_{OH_{MAX}} = -400 \text{ uAmps} \]
\[I_{IH_{MAX}} = 20 \text{ uAmps} \]

Fanout_{HIGH} = 400uAmp / 20 uAmp = 20

Low Output

\[I_{OL_{MAX}} = 8 \text{ mAmps} \]
\[I_{IL_{MAX}} = -0.4 \text{ mAmps} \]

Fanout_{LOW} = 8 mAmp / 0.4 mAmp = 20

R · I · T

TTL Families

• 74xx : Introduced by Sylvania in 1963, Popularized by TI
• 74Hxx : High Speed TTL, Reduce propagation delay achieved by lowering resistor values at the expense of increased power consumption.
• 74Lxx : Low Power TTL, Reduce power consumption achieved by raising resistor values to at the expense of increased propagation delay.
• 74Sxx : Schottky TTL, Reduced propagation delay achieved by using Schottky transistors.
• 74LSxx : Lower Power Schottky TTL, Reduced propagation delay and reduced power consumption achieved by using Schottky transistors with higher resistor values.

R · I · T
Logic Levels – CMOS & TTL (specific)

Characteristics Of TTL Families

Table 3-11, page 167
TTL NOR Gate (74LS02)